Automatic utterance type detection using suprasegmental features
نویسنده
چکیده
The goal of the work presented here is to automatically predict the type of an utterance in spoken dialogue by using automatically extracted suprasegmental information. For this task, we present and compare three stochastic algorithms: hidden Markov models, artificial neural nets, and classification and regression trees. These models are easily trainable, reasonably robust and fit into the probabilistic framework required for speech recognition. Utterance type detection is dependent on the assumption that different types of utterances have different suprasegmental characteristics. The categorisation of utterance types is based on the theory of conversation games and consists of 12 move types (e.g. reply to a question, wh-question, acknowledgement). This utterance type detector is used in an automatic speech recognition system to reduce the word error rate.
منابع مشابه
Suprasegmental duration modelling with elastic constraints in automatic speech recognition
In this paper a method of integrating a model of suprasegmental duration with a HMM-based recogniser at the post-processing level is presented. The N-Best utterance output is rescored using a suitable linear combination of acoustic log-likelihood (provided by a set of tied-state triphone HMMs) and duration log-likelihood (provided by a set of durational models). The durational model used in the...
متن کاملIntegration of Visible Image and LIDAR Altimetric Data for Semi-Automatic Detection and Measuring the Boundari of Features
This paper presents a new method for detecting the features using LiDAR data and visible images. The proposed features detection algorithm has the lowest dependency on region and the type of sensor used for imaging, and about any input LiDAR and image data, including visible bands (red, green and blue) with high spatial resolution, identify features with acceptable accuracy. In the proposed app...
متن کاملOnline Error Detection of Barge-In Utterances by Using Individual Users' Utterance Histories in Spoken Dialogue System
We develop a method to detect erroneous interpretation results of user utterances by exploiting utterance histories of individual users in spoken dialogue systems that were deployed for the general public and repeatedly utilized. More specifically, we classify barge-in utterances into correctly and erroneously interpreted ones by using features of individual users’ utterance histories such as t...
متن کاملComputer Assisted Pronunciation Teaching (CAPT) and Pedagogy: Improving EFL learners’ Pronunciation Using Clear Pronunciation 2 Software
This study examined the impact of Clear Pronunciation 2 software on teaching English suprasegmental features, focusing on stress, rhythm and intonation. In particular, the software covers five topics in relation to suprasegmental features including consonant cluster, word stress, connected speech, sentence stress and intonation. Seven Iranian EFL learners participated in this study. The study l...
متن کاملDimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)
This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998